Yury Chernoff




Primary School/Department: 
School of Biological Sciences
Title 2: 
Director, Center for Nanobiology of the Macromolecular Assembly Disorders (NanoMAD)

Office Location: 
EBB 5016
Georgia Institute of Technology

Research Affiliations:

Research Center Affiliations: 
Center for Drug Design Development & Delivery
Center for Nanobiology of the Macromolecular Assembly Disorders - NanoMAD

Research Areas:

Research Areas: 
Molecular Evolution

Research Interests:

Yeast genetics and molecular biology, chaperones and protein misfolding, amyloid and prion diseases, epigenetics and protein-based inheritance.

My laboratory employs yeast models to study prions and amyloids. Prions were initially identified as proteins in an unusual conformation that cause infectious neurodegenerative diseases, such as "mad cow" disease, kuru or Creutzfeldt-Jakob disease. Infection depends on the prion's ability to convert anon-prion protein, encoded by the same host maintenance gene, into the prion conformation. Prions form ordered cross-beta fibrous aggregates, termed amyloids. A variety of human diseases, includingAlzheimer's disease, are associated with amyloids and possess at least some prion properties. Someamyloids have positive biological functions. Many proteins can form amyloids in specific conditions. It is thought that amyloid represents one of the ancient types of the protein fold. Some yeast non-Mendelianheritable elements are based on a prion mechanism. This shows that heritable information can be coded in protein structures, in addition to information coded in DNA sequence. Therefore, prions provide a basis for the protein-based inheritance in yeast (and possibly in other organisms).


Major topics of research in my lab include cellular control of prion formation and propagation (with a specific emphasis on the role of chaperone proteins), and development of the yeast models for studying mammalian and human amyloids, involved in diseases. Our research has demonstrated that prions can be induced by transient protein overproduction and discovered the crucial role of chaperones in prionpropagation, shown evolutionary conservation of prion-forming properties, established a yeast system for studying species-specificity of prion transmission, and uncovered links between prions, cytoskeletalnetworks and protein quality control pathways.