Georgia Tech

W. Hong Yeo


Research Keywords:

Stretchable/flexible hybrid electronics, biomedical materials & devices, and micro & nano electronic systems

Research Affiliations:

Research Areas:

Research Interests:

Dr. Yeo’s research in the field of biomedical science and bioengineering focuses on the fundamental and applied aspects of biomolecular interactions, soft materials, and nano-microfabrication for the development of nano-biosensors and soft bioelectronics.

Robert Nerem


Research Affiliations:

Research Areas:

Research Interests:

Biomechanics, cardiovascular devices, cellular engineering, vascular biology, tissue engineering, and regenerative medicine.

Flavio Fenton


Research Keywords:

Complex systems and excitable media, experimental physiology, high performance computing and GPU

Research Interests:

High performance computing:  

·  Development and implementation of novel algorithms to solve partial differential equations in two- and three-dimensional regular and irregular domains.

·  Computer modeling of complex systems using supercomputers, as well as graphics cards (GPUs).

·  Simulations and large data visualization of complex systems in or near-real time locally or over the web.

 Experiments in complex systems:

·  Cardiac dynamics. Study the voltage and calcium dynamics of cardiac tissue using heart sections or whole hearts from fish and mice to large mamals horses. Using voltage- and calcium-sensitive dyes and ultrafast cameras, we record the dynamics of voltage and calcium waves and study their instabilities associated with arrhythmias.

·  Dynamics of spiral and scroll waves.

·  Mechanisms of bifurcation and period-doublings in time and in space.

·  Methods for chaos control and synchronization.

·  Chemical, physical, and other biophysical oscillators with complex dynamics and instabilities. Examples: spiral and scroll waves in the Belousov–Zhabotinsky reaction, saline oscillator.

Mathematical modeling of complex systems:

·  Development and analysis of mathematical models that describe generic or detailed dynamics of excitable and oscillatory media (heart, neurons, chemical reactions, calcium signaling, physical and biological oscillators, etc.).

·  Study of bifurcations and chaotic (organized and disorganized) dynamics of excitable and oscillatory systems.

·  Develop and apply control methods for suppressing or synchronizing complex dynamics.

·  Study of stability and instabilities of spiral waves and three-dimensional scroll waves in idealized and realistic domains of excitable media.

In most projects there is crossover between theory, simulations and experiments, where experiments (simulations) are used to guide theory and simulations (experiments).

Subscribe to RSS - Georgia Tech