Georgia Institute of Technology

Robert Butera


 

Biography:

Robert Butera is a Professor jointly appointed in the School of Electrical/Computer Engineering at Georgia Tech and the Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University, both in Atlanta, GA USA.  He is also the one of the founders of the Neural Engineering Center, focused on bringing together clinicians and neuroscientists with engineers to develop novel methods for neuromodulation, where he continues to serve on the executive committee. His lab develops methodologies for selectively stimulating and blocking peripheral nerve activity for sensorimotor and organ modulation applications.  His group also develops open software (http://www.rtxi.org) for enabling real-time closed-loop control of electrophysiology experiments and more recently is developing ultra-low cost open hardware to do the same (http://www.puggleboard.com).  For over 15 years Dr. Butera’s lab has been established in the fields of cellular neurophysiology and computational neuroscience and the development of novel experiments that combine the two through real-time computing. This experience and recent clinical collaborations has motivated his lab to shift research direction over the past few years towards translational neuroscience applications.  Professionally, Dr. Butera serves as the Vice-President for Publications for the IEEE Engineering in Medicine and Biology Society.  Dr. Butera is a Fellow of AIMBE and AAAS and a Distinguished Lecturer of the IEEE Engineering in Medicine and Biology Society. 

Research Affiliations:

Research Areas:

Research Interests:

  • Neuromodulation of peripheral nerve activity
  • Real-time control methods applied to electrophysiology measurements
  • Autonomic modulation of visceral organs.

Our laboratory combines engineering and neuroscience to tackle real-world problems. We utilize techniques including intracellular and extracellular electrophysiology, computational modeling, and real-time computing.  

 

Aaron Levine


 

Research Keywords:

Stem cell policy, bioethics, science policy, and STEM education

Research Affiliations:

Research Areas:

Research Interests:

The impact of ethical controversy on scientific research, with a particular emphasis on emerging biomedical technologies. Recent work has focused on a range of issues related to stem cell policy (including state-level science policy and the rise of unproven stem cell therapies) as well as the oversight of assisted reproduction.

Julia Babensee


 

Research Keywords:

Biomaterials, immunoengineering, dendritic Cells

Research Affiliations:

Research Areas:

Research Interests:

Host responses to combination products, biomaterial interactions with dendritic cells, tissue engineering for rheumatoid arthritis, targeted DNA vaccine delivery, and biomaterial-applied immunology.

Eberhard Voit


 

Research Keywords:

Complex systems, BST, biomedical systems, metabolic pathways, biochemical systems theory, S-systems

Research Affiliations:

Research Areas:

Research Interests:

It is our vision that one day mathematics and computation will be capable of reliably predicting, manipulating and optimizing biomedical systems for the advancement of medicine, drug development, biotechnology and productive and sustainable stewardship of the environment.

Pursuing this vision, the goal of our lab is to understand small biological systems in great detail. We work toward this goal by performing studies that target the fine-tuned synergism between genes, proteins and metabolites, and investigate the resultant, usually very effective functioning of healthy cells and organisms in comparison to those that are mutated or diseased. Milestones along the way are insights into the rationale for the intricate design and operation principles that govern biological systems.

The work in our lab is strictly mathematical and computational, but we collaborate with several superb experimental groups that provide us with data and appreciate our modeling efforts as tools for explanation and hypothesis generation.

Todd Streelman


 

Research Affiliations:

Research Areas:

Research Interests:

Cichlid fishes from Lake Malawi offer the unprecedented opportunity to study the relationship between genotype and phenotype in wild vertebrates. Over the past ten years, with funding from the Alfred P. Sloan Foundation, NSF and NIH, we’ve pioneered genomic and molecular biology approaches in this natural system to solve problems difficult to address in traditional model organisms. Major projects include (i) tooth and taste bud patterning and regeneration; (ii) genomics of complex social behavior; and (iii) developmental diversification of the cranial neural crest, placodal plate and neural plate. We analyze and manipulate genomes and development in multiple species of Malawi cichlids, spanning divergence in embryonic/adult phenotypes and behavior – and translate our findings to zebrafish and mouse models.

Michael Goodisman


 

Research Keywords:

Sociobiology, behavior, molecular evolution, genomics, evolutionary biology, bioethics, population genetics

Research Areas:

Research Interests:

The evolution of sociality represented one of the major transition points in biological history.  I am interested in understanding how evolutionary processes affect social systems and how sociality, in turn, affects the course of evolution.  My research focuses on the molecular basis underlying sociality, the nature of selection in social systems, the breeding biology of social animals, the process of self-organization in social groups, and the course of development in social species.

John McDonald


 

Research Affiliations:

Research Areas:

Research Interests:

In the McDonald lab, we are taking an integrated systems approach to the study of cancer. This means that we view cancer not as a defect in any particular gene or protein, but as a de-regulated cellular/inter-cellular process. An understanding of such complex processes requires the implementation of experimental approaches that can provide an integrative holistic or 'systems' view of intra-and inter-cellular process. We employ a number high-throughput genomic (e.g., DNA-seq, RNA-seq, microarray) technologies to gather systems data on the status of cancer cells. We strive to integrate into our research program, the exceptional strengths that exist at Georgia Tech in the fields of engineering and the computational sciences.
Our current goals are:
1) development of a generalized cancer diagnostic using mass spectrometric metabolic profiling;
2) development of small non-encoding RNAs as potential therapeutic agents and the use of functionalized nanoparticles (nanohydrogels) for their targeted delivery to cancer cells; and
3) exploring the significance of mRNA splice variants in the onset and progression of cancer.

 

Soojin Yi


 

Research Affiliations:

Research Areas:

Research Interests:

We are broadly interested in evolutionary genomics and epigenomics problems and have never been afraid to take up a new topic. Here are some of our current research interests.

  • Epigenetic Evolution of human Brains: A major research thrust in the lab is to understand how epigenetic regulatory mechanisms evolve. One specific question is how DNA methylation patterns in human brains have evolved since humans and chimpanzees have diverged. Human brains are arguably one of the most exceptionally rapidly evolved organ in the human body. We have published a few articles on this, and hopefully many more to come.
  • Neuroepigenomics: We are also interested in understanding how epigenetic marks regulate and/or propagate neuropsychiatric diseases of human brains. Our current research include epigenetic analysis of schizophrenia brains.
  • Epigenetics and Genome Evolution: Epigenetic mechanisms are widespread throughout the tree of life, but its components and how each component interact with each other vary greatly across different taxa. For example, genomic patterns of DNA methylation in invertebrate animals differ greatly from those of vertebrates. We have been studying how DNA methylation in invertebrates vary across the genome and among species, and how epigenetic variation yields functional consequences.
  • Linking genomes and phenotypes in a vertebrate model system: In collaboration with Dr. Donna Maney at Emory University, we are investigating how a prevalent chromosomal polymorphism in the white-throated sparrow leads to two distinctive and complex phenotypes. We use genomic and epigenomic tools to complement the behavioral and physiological approaches of our collaborators.

Manu Platt


 

Research Affiliations:

Research Areas:

Research Interests:

Tissue remodeling, HIV, cardiovascular disease, sickle cell disease strokes, and predictive medicine.

Platt Lab Mission: To fuse engineering, cell biology, and physiology to understand how cells sense, respond, and remodel their immediate mechanical and biochemical environments for repair and regeneration in health and disease, then to translate that knowledge to clinics domestically and internationally to address global health disparities.

Loren Williams


 

Research Affiliations:

Research Areas:

Research Interests:

We study folding and structure of RNA and DNA as modulated by sequence, covalent damage, anti-cancer drugs, proteins, other nucleic acid molecules. The oldest assembly in biology is the ribosome, which is a primary focus of our efforts. Ancient ribosomal structure and function, from beyond the root of the tree of life, can be inferred from extant structure/function combined with phylogeny, evolutionary theory, biophysical chemistry, bioinformatics and molecular biology. We use all of these approaches to construct models of ancient ribosomes, which we then study by biochemical methods. Three-dimensional structure, being more conserved over evolutionary time than sequence, offers some of the most important guideposts in our journeys down the base of the tree of life.

Pages

Subscribe to RSS - Georgia Institute of Technology