Georgia Institute of Technology

H. Jerry Qi


 

Research Areas:

Research Interests:

Dr. Qi’s research falls in the general area of finite deformation multiphsyics modeling of soft active materials. The material systems include: shape memory polymers, shape memory elastomeric composites, light activated polymers, covalent adaptive network polymers (or vitrimers). Particularly, he is interested in understanding and modeling the evolution of material structure and mechanical properties of these materials under environmental stimuli, such as temperature, light, etc, and during material processing, such as 3D printing. To assist understanding of mechanical properties, his group routinely conducts thermomechanical or photo-mechanical experiments. Constitutive models developments are typically based on the observations from these experiments. The ultimate goal of the constitutive models is to integrate them with finite element through user material subroutines so that these models can be used to solve complicated 3D multiphysics problems involving nonlinear mechanics.

His current research projects include 4D printing of active materials, mechanics in 3D printing technology, active polymer design and manufacturing, reprocessing and recycling polymers. For 3D/4D printing, his group is developing 3D hybrid printing methods by using a variety of 3D printing technologies, such as inkjet, Stereolithography (SLA), Direct Ink Write (DiW), Fused Deposition Modeling (FDM), to print active and functional materials, such as shape memory polymers, liquid crystal elastomers, conductive polymers, epoxies, and cellulose nanocrystals. For reprocessing and recycling polymers, his group is developing methods and technologies to recycling thermosetting polymers and composites, such as fiber reinforced epoxy composites. These projects are conducted through supports by NSF and AFOSR, and through collaborations with Singapore University of Technology and Design (SUTD), and Air Force Research Laboratories (AFRL).

Lewis Wheaton


 

Research Areas:

Research Interests:

The Cognitive Motor Control Laboratory seeks to understand neurophysiology guiding skillful human-object interactions in upper extremity motor control. We use neuroimaging to identify anatomical and physiological circuits in humans that guide successful skilled behavior. Our clinical studies consider neural systems that can suffer injury or dysfunction related to deficits in skillful motor control, and how to utilize surrogate neural circuits in restorative motor therapies in stroke and upper limb amputation.

Alberto Stolfi


 

Research Areas:

Research Interests:

We seek to answer how animal behavior is set up by the collective behaviors of individual cells, over the entire course of brain and spinal cord development. We want to understand how gene activity can instruct developing neurons to move around, change shape, and connect to other cells. To do this, we study the simple larval nervous system of our closest invertebrate relatives, the tunicates. Tunicates, like us, belong to the Chordate phylum, but have very simple embryos and compact genomes. The laboratory model tunicate Ciona has only 177 neurons and is the only chordate with a fully mapped "connectome". We take advantage of this simplicity to understand molecular mechanisms that may underlie human neurodevelopment.

Thomas Orlando


 

Research Affiliations:

Research Interests:

Electron- and Photon-stimulated Interface and Surface Processes. Dr. Orlando's group utilizes state-of-the-art ultra-high vacuum (UHV) surface science systems equipped with UV-laser sources and low-energy electron beams to stimulate reactions (such as the production of hydrogen) on a variety of substrates and interfaces.  Sensitive laser detection schemes (resonance-enhanced multiphoton ionization) are used to probe the reaction dynamics. Approaches based on quantum mechanical interference to control desorption and patterning of surfaces at the nano- and meso-scale are also being developed.

Environmental Chemistry and Planetary Surface Science. Water is ubiquitous in terrestrial and planetary atmospheres and environments. Dr. Orlando's group studies "wet" interfaces using nanoscale films of ice grown in UHV. Radical and ion-molecule reactions are then initiated using electron- and photon-beam sources.  These experiments are relevant to understanding the photochemistry of stratospheric cloud particles and magnetospheric processing of icy satellite surfaces in the Jovian system.

Biophysical Chemistry. The mechanisms of DNA damage and repair have been studied extensively, though the role intrinsic waters of hydration play in initiating damage have not been elucidated. Dr. Orlando's group will carry out electron- and photon-irradiation studies of DNA:water interfaces to examine the importance of direct vs. indirect damage.

Seth Hutchinson


 

Research Affiliations:

Research Interests:

Robots never know exactly where they are, what they see, or what they're doing. They live in dynamic environments, and must coexist with other, sometimes adversarial agents. Robots are nonlinear systems that can be underactuated, redundant, or constrained, giving rise to complicated problems in automatic control. Many of even the most fundamental computational problems in robotics are provably hard. 

Over the years, these are the issues that have driven my group's research in robotics. Topics of our research include visual servo control, planning with uncertainty, pursuit-evasion games, as well as mainstream problems from path planning and computer vision. 

Vinayak Agarwal


 

Research Interests:

A majority of antibiotics and drugs that we use in the clinic are derived or inspired from small organic molecules called Natural Products that are produced by living organisms such as bacteria and plants. Natural Products are at the forefront of fighting the global epidemic of antibiotic resistant pathogens, and keeping the inventory of clinically applicable pharmaceuticals stocked up. Some Natural Products are also potent human toxins and pollutants, and we need to understand how these toxins are produced to minimize our and the environmental exposure to them.

We as biochemists ask some simple questions- how and why are Natural Products produced in Nature, what we can learn from Natural Product biosynthetic processes, and how we can exploit Nature's synthetic capabilities for interesting applications?

Broadly, we are interested in questions involving (meta)genomics, biochemistry, structural and mechanistic enzymology, mass spectrometry, analytical chemistry, and how natural product chemistry dictates biology.

Susan Margulies


 

Research Affiliations:

Research Areas:

Research Interests:

Biomechanics of brain injury, pediatric head injury, soft tissue mechanics, ventilator-induced lung injury, lung mechanics, pathways of cellular mechanotransduction, and tissue injury thresholds.

My research in head injury will continue to focus on how and why head injuries occur in adults and children and to improve detection and treatment strategies. At Georgia Tech, I will be continuing that research, looking at innovative biomarkers and new devices to detect mild traumatic brain injuries. At Emory, my research will be focused on animal models for diffuse as well as focal brain injuries—incorporating developments at Georgia Tech into our preclinical model. I also look forward to close collaborations with Children’s Healthcare of Atlanta and Emory University faculty to improve the outcomes after traumatic brain injuries.

Shuichi Takayama


 

Research Affiliations:

Research Areas:

Research Interests:

The MNM Biotech Lab uses engineering expertise to assist life scientists in the study, diagnosis, and treatment of human disease. By developing better models of the body, we help advance drug discovery, increase understanding of the mechanisms of disease, and develop clinical treatments. Areas of study include:

  • Aqueous Two-Phase Systems
  • Microfluidic Logic Circuits
  • Interrogation and Control of Cell Signaling Mechanisms
  • Assisted Reproductive Technology
  • Lung-on-a-Chip
  • 3D Cell Culture
  • Microenvironment Engineering and Materials Modifications
  • Size-adjustable nanochannels and DNA linearization/stretching
  • Cancer Metastasis and Migration

Pages

Subscribe to RSS - Georgia Institute of Technology