Georgia Institute of Technology

Ikay Okafor


 

Research Affiliations:

Clarissa Whitmire


 

Research Affiliations:

Research Areas:

Research Interests:

sensory neural coding, thalamocortical interactions, thalamic state/gating

Levi Wood


 

Research Keywords:

Vasculature, microfluidics, inflammation, systems biology, Alzheimer's disease, inflammatory bowel disease

Research Affiliations:

Research Areas:

Research Interests:

Our research focuses on applying systems analysis approaches and engineering tools to identify novel clinical therapeutic targets for complex diseases. It is challenging to develop new treatments for these diseases, such as Alzheimer's disease (AD) and Traumatic Brain Injury (TBI), because they do not have a single genetic cause and they simultaneously present broad physiologic changes. By combining novel engineered in vitro platforms, mouse models, and multivariate computational systems analysis, we will be able to 1) capture a holistic systems-level understanding of complex diseases, and 2) isolate specific mechanisms driving disease. The ultimate goal of our laboratory is to use these tools to identify new mechanisms driving disease onset and progression that will translate to effective therapeutic strategies.

Gabe Kwong


 

Research Keywords:

Nanomedicine, engineering immunity, and biomedical microsystems

Research Affiliations:

Research Areas:

Research Interests:

Human health has been transformed by our collective capacity to engineer immunity — from the pivotal development of the smallpox vaccine to the curative potential of recent cancer immunotherapies. These examples motivate our research program that is conducted at the interface of Engineering and Immunology, and where we develop biomedical technologies and applications that shape a diverse array of immunological systems.

The questions that are central to our exploration include: How do we begin to study an individual's repertoire of well over one billion immune cells when current technologies only allow us to study a handful of cells at a time? What are the biomarkers of immunological health as the body responds to disease and ageing, and how may these indicators trigger clinical decisions? And how can we genetically rewire immune cells to provide them with entirely new functions to better fight complex diseases such as cancer?

To aid in our studies, we use high-throughput technologies such as next-generation sequencing and quantitative mass spectrometry, and pioneer the development of micro- and nanotechnologies in order to achieve our goals. We focus on clinical problems in cancer, infectious diseases and autoimmunity, and ultimately strive to translate key findings into therapies for patients.

Ravi Kane


 

Research Affiliations:

Research Areas:

Research Interests:

  • Polyvalency and Biotherapeutics
  • Nanobiotechnology
  • Optogenetics

Professor Kane’s group conducts research at the interface of biotechnology and nanotechnology. The group is designing nanoscale polyvalent therapeutics and working on the molecular engineering of biosurfaces and nanostructures.  

A major focus of the group’s research involves the design of polyvalent ligands, i.e., nanoscale scaffolds presenting multiple copies of selected biomolecules. The Kane group has made seminal contributions to a fundamental understanding of polyvalent recognition and has designed polyvalent inhibitors that are effective in vivo. Currently, the group is designing polyvalent molecules that control stem cell fate as well as polyvalent inhibitors of pathogens such as HIV and influenza. The group is also designing nanoscale scaffolds for antigen presentation as part of novel strategies for designing vaccines. The approach could lead to the development of “universal” influenza vaccines as well as effective vaccines targeting RSV and malaria. Other interests of the group involve optogenetics – the development and application of methods that use light to control cell function – as well as the design of enzymes and nanocomposites that target antibiotic-resistant pathogens.

Julie Champion


 

Research Affiliations:

Research Areas:

Research Interests:

  • Developing therapeutic protein materials, where the protein is both the drug and the delivery system
  • Engineering proteins to control and understand protein particle self-assembly
  • Repurposing and engineering pathogenic proteins for human therapeutics
  • Creating materials that mimic cell-cell interactions to modulate immunological functions for various applications, including inflammation, cancer, autoimmune disease, and vaccination

Pages

Subscribe to RSS - Georgia Institute of Technology