Emory University

Hanjoong Jo


 

Research Affiliations:

Research Interests:

  • Cardiovascular Mechanobiology and Nanomedicine Lab
  • Role of blood flow in Atherosclerosis, and Aortic valve disease
  • Mechanosensitive genes, MicroRNAs, and Epigenomic Regulation in Atherosclerosis and Aortic valve disease
  • Therapeutics development for atherosclerosis and Aortic valve disease
  • Nanomedicine – In vivo RNA and drug delivery

Lena Ting


 

Research Affiliations:

Research Areas:

Research Interests:

My research program is at the forefront of the nascent area of neuromechanics, and pioneers new understanding of how movement intention translates to action through the complex interplay between the nervous system and the musculoskeletal system. Our basic science findings have facilitated advances in understanding movement disorders and in identifying mechanisms of rehabilitation. We focus on complex, whole body human movements such as bipedal walking, standing balance, which have strong clinical relevance, as well as skilled movements involved in dance and sport. By drawing from neuroscience, biomechanics, rehabilitation, robotics, and physiology we have discovered exciting new principles of human movement. Using computational and experimental methods, we have been able to take electrical neuromotor signals from the body and link changes in neural sensorimotor mechanisms to functional biomechanical outputs during movement. Our novel framework is being used by researchers across the world to understand both normal and impaired movement control in humans as well as animals as well as to develop better robotic devices. 

My lab’s research is rapidly expanding to include a wide variety of sensorimotor disorders including Parkinson’s disease, stroke, spinal cord injury, lower limb loss, depression, and normal aging. We collaborate with several physical therapy researchers who are developing novel gait rehabilitation interventions for Parkinson’s disease, stroke, and spinal cord injury to understand how to understand and optimize treatment outcomes. We are examining the effects of lower limb loss on gait and balance with implications for improved prosthesis design. We are exploring psychomotor metrics to help optimize deep brain stimulation treatment for Parkinson’s and depression. We are also studying highly skilled behaviors seen in dancers and athletes to inform development of rehabilitation strategies as well as devices to improve gait and balance. To understand the neural basis of the movements we measure, we are recording brain activity during balance control to see how neural mechanism controlling movement change with impairment and rehabilitation. We are also developing a new foundational understanding and computer simulations of how muscle proprioceptive sensors provide information to the brain and nervous system for movement that have translational impact in informing the mechanisms underlying impairments such as sensory loss after cancer treatment, spasticity, and other balance disorders. 

W. Robert Taylor


 

Research Affiliations:

Research Interests:

Dr. Taylor’s laboratory is focused on obtaining a better understanding of the role of vascular inflammation in the pathogenesis of vascular disease. His work employs novel animal models of human vascular disease to study the role of various mechanical and humoral factors in the development of hypertension and atherosclerosis. He has a particular interest in the renin angiotensin system, advanced glycation endproducts, biomechanical forces and oxidative stress. A significant effort is also underway to examine the interaction between vascular inflammation and bone marrow-derived endothelial progenitor cells. Dr. Taylor’s research program involves strong collaborative efforts with other members of the Department of Biomedical Engineering with a focus on applying enabling nanotechnology and imaging approaches to the general area of atherosclerosis.

David Lynn


 

Research Affiliations:

Research Areas:

Research Interests:

The David G. Lynn Group at Emory University works to understand the structures and forces that enable supramolecular self-assembly, how chemical information can be stored and translated into new molecular entities, and how the forces of evolution can be harnessed in new structures with new function. Some of our current research areas include the origins of prokaryotic and eukaryotic pathogenesis, template directed polymerization and dynamic combinatorial systems, amyloid diseases and protein self-assembly, and intelligent materials.

Chunhui Xu


 

Research Affiliations:

Research Areas:

Research Interests:

The Xu laboratory is focusing on human cardiomyocytes derived from pluripotent stem cells, which hold promise for cardiac cell therapy, disease modeling, drug discovery, and the study of developmental biology. The laboratory is also collaborating with investigators in Georgia Tech, Emory University, and Children's Healthcare of Atlanta, exploring the application of nanotechnology and tissue engineering in stem cell research.

Muralidhar Padala


 

Biography:

An engineer by training, Dr. Padala is currently focused on studying the biomechanics and mechanobiology of heart valve disease and heart failure. He received his BS in mechanical engineering from Osmania University in India in 2004, and an MS in mechanical engineering and PhD in bioengineering from Georgia Tech in 2010. Since joining Emory and establishing his independent laboratory in 2010, his focus has been on studying in-vivo heart valve and cardiac mechanics in pre-clinical models. In 2012, he spent one year at Imperial College London on a Leducq Fondation Career Development Award. He trained under Prof. Sir. Magdi Yacoub, a pioneer in cardiac transplantation and heart valve tissue engineering.

Research Keywords:

Heart failure, cardiac valve disease, cardiovascular devices, cell and gene therapy, tissue engineering of heart valves

Research Affiliations:

Research Areas:

Research Interests:

My laboratory is interested in the pathogenesis of heart valve disease and its impact on the onset and progression of heart failure. We use rodent and swine models of heart valve regurgitation, to understand the changes in the myocardial remodeling at multiple scales. Our recent work is also focused on linking functional changes in the myocardium to detectable genomic, transcriptomic, proteomic, and metabolomic changes, and investigate the potential of using their relationship for early detection of heart failure. Some of our work also involves developing new medical devices and technologies to repair heart valves and associated heart failure.

Nael McCarty


 

Research Areas:

Research Interests:

Molecular physiology of ion channels and receptors, with emphasis on epithelial chloride channels. Our specific focus is the pathophysiology of Cystic Fibrosis, including the structure/function of CFTR and its many roles in the airway.

Young-sup Yoon


 

Research Affiliations:

Research Areas:

Research Interests:

The Yoon Lab has been working on stem cell research in various cardiovascular diseases. Our major research interest is to use stem cell technology to treat various cardiovascular diseases, and we have been developing and using different bone marrow-derived stem sell or progenitor cells for cardiovascular repair.

Nicholas Boulis


 

Research Affiliations:

Research Areas:

Research Interests:

Dr. Nicholas Boulis, MD is a Functional Neurosurgeon with significant expertise in the field of gene transfer to the nervous system. Dr. Boulis' Gene and Cell Therapy Translational Laboratory pursues advanced biological treatments for neurological disorders, including Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig's disease) and Spinal Muscular Atrophy (SMA).

Nick Willett


 

Research Affiliations:

Research Areas:

Research Interests:

The overall research of the lab focuses on a systems integration approach to musculoskeletal disease and regenerative engineering by applying novel imaging and engineering approaches to mechanistic biology problems. Our current work has three main thrusts: (i) cell and biologic therapies for the healing of large bone and muscle defects, (ii) multi-scale mechanical regulation of bone regeneration, (iii) intra-articular therapeutic delivery for post-traumatic osteoarthritis. Combining backgrounds in mechanical engineering, vascular biology and musculoskeletal tissue regeneration, our research integrates mechanics principles and analytical tools with molecular biology techniques to uniquely address challenges of musculoskeletal disease and regeneration.

Pages

Subscribe to RSS - Emory University